
A triple product identity
Jasper Ty

This document is a write-up of my solution to a homework problem in the class notes ([24ac]) for Math
531, Winter 2024 at Drexel. The problem is

Exercise A.3.3.3 (a) 6 Prove that

∞∏
n=1

(1− xn)3 =

∞∑
k=0

(−1)k(2k + 1)xk(k+1)/2 in K[[x]]

This identity is used in a proof of the Lagrange-Jacobi four-square theorem. [Sambal22]

1 Preliminaries
We adopt all relevant notation from [24ac]. K will denote a general (commutative) ring,K[z±]will denote
the ring of Laurent polynomials in the indeterminate z over K , and we use K[[x]] to denote the ring of
formal power series in the indeterminate x over K .

We use the following important theorem

Theorem: Jacobi Triple Product

In the FPS ring Z[z±][[q]], we have

∞∏
n=1

(
1 + q2n−1z

)(
1 + q2n−1z−1

)(
1− q2n

)
=
∑
ℓ∈Z

qℓ
2

zℓ

Proof. See section 4.3.3 in [24ac]

We won’t explicitly mention this, but the following fact will lurk in the background

Lemma

Let u, v be units in K , and let a, b be integers such that a > 0, a ≥ |b|. In a purely formal way,
define qszt := (usvt)xsa+tb . Then the Jacobi triple product holds in K[[x]] in the same form as
above.

This says we can “let” q = uxa and z = vxb safely.
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2 Proof of the identity
An initial attempt can be made by substituting into the Jacobi Triple Product the values q = x and z =
−x, and we obtain

∞∏
n=1

(
1 + x2n−1(−x)

)(
1 + x2n−1(−x)−1

)(
1− x2n

)
=
∑
ℓ∈Z

xℓ2(−x)ℓ

This simplifies to
∞∏

n=1

(
1− x2n

)2(
1− x2n−2

)
=
∑
ℓ∈Z

(−1)ℓxℓ2+ℓ

Which seems ripe for a re-indexing into the form we want. However, on the left hand side, we have a 0
factor, as 1− x2n−2 = 0 when n = 1, and on the right hand side, we have cancellation, as, for all integers
k we have k2 + k = (−k − 1)2 + (−k − 1), hence the terms corresponding to ℓ = k and ℓ = −k − 1
cancel out. We are left with the identity

0 = 0

which tells us nothing. (Anything implies a true statement!)

So we try again, but this time we hold off on making our substitutions and deal we with the problematic
(1 + qz−1) term in the Jacobi Triple Product in Z[z±][[q]] first.

Theorem: Diminished Jacobi Triple Product

In the FPS ring Z[z±][[q]], we have

(
1+qz

)(
1−q2

) ∞∏
n=2

(
1+q2n−1z

)(
1+q2n−1z−1

)(
1−q2n

)
=

∞∑
k=0

 2k∑
j=0

(−1)jqk
2+jzk−j


Note that the factor 1 + qz−1 does not appear on either side.

Proof. This is obtained by dividing both sides of the Jacobi Triple Product by 1 + qz−1. The left hand
side becomes

1

1 + qz−1

∞∏
n=1

(
1 + q2n−1z

)(
1 + q2n−1z−1

)(
1− q2n

)
=

(
1 + qz

)(
1− q2

) ∞∏
n=2

(
1 + q2n−1z

)(
1 + q2n−1z−1

)(
1− q2n

)
(1)

straightforwardly. The right hand side needs more involved computation. First, we note that 1+qz−1 has
a bona-fide inverse in Z[z±][[q]]

(1 + qz−1)−1 = 1− q1z−1 + q2z−2 ± · · ·

=

∞∑
i=0

(−1)iqiz−i
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This tells us that, for all a ∈ N and b ∈ Z

qazb

1 + q2n−1z−1
=

∞∑
i=0

(−1)iqa+izb−i

Then the right hand side of the Jacobi Triple product divided by 1 + qz−1 can be written

1

1 + qz−1

∑
ℓ∈Z

qℓ
2

zℓ =
∑
ℓ∈Z

∞∑
i=0

(−1)iqℓ
2+izℓ−i

We define, to make calculations nicer, the following FPS fa,b

fa,b :=
qazb

1 + q2n−1z−1
=

∞∑
i=0

(−1)iqa+izb−i

Then
1

1 + qz−1

∑
ℓ∈Z

qℓ
2

zℓ =
∑
ℓ∈Z

fℓ2,ℓ

And, surprisingly, there is a nice pattern of cancellation that occurs, which has to do with the fact that
consecutive perfect squares differ by odd numbers. First we break the outer sum into a nonnegative and
negative piece, and re-index both so their summation index runs from 0 to ∞, then recombine them

∑
ℓ∈Z

fℓ2,ℓ =

∑
ℓ≥0

fℓ2,ℓ

+

[∑
ℓ<0

fℓ2,ℓ

]

=

[ ∞∑
k=0

fk2,k

]
+

[ ∞∑
k=0

f(−k−1)2,(−k−1)

]

=

[ ∞∑
k=0

fk2,k + f(−k−1)2,(−k−1)

]
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Then, we note that we may break up fk2,k as follows

fk2,k =

∞∑
i=0

(−1)iqk
2+izk−i

=

[
2k∑
i=0

(−1)iqk
2+izk−i

]
+

[ ∞∑
i=2k+1

(−1)iqk
2+izk−i

]
︸ ︷︷ ︸

re-index

=

[
2k∑
i=0

(−1)iqk
2+izk−i

]
+

 ∞∑
i=0

(−1)2k+1+i︸ ︷︷ ︸
=(−1)i+1

qk
2+(2k+1+i)︸ ︷︷ ︸

=q(−k−1)2+i

zk−(2k+1+i)︸ ︷︷ ︸
=z(−k−1)−i


=

[
2k∑
i=0

(−1)iqk
2+izk−i

]
+

[ ∞∑
i=0

(−1)1+iq(−k−1)2+iz(−k−1)−i)

]

=

[
2k∑
i=0

(−1)iqk
2+izk−i

]
−

[ ∞∑
i=0

(−1)iq(−k−1)2+iz(−k−1)−i)

]

=

[
2k∑
i=0

(−1)iqk
2+izk−i

]
− f(−k−1)2,(−k−1)

which we insert back in
∞∑
k=0

fk2,k + f(−k−1)2,(−k−1)

=

∞∑
k=0

[(
2k∑
i=0

(−1)iqk
2+izk−i

)
− f(−k−1)2,(−k−1) + f(−k−1)2,(−k−1)

]

=

∞∑
k=0

[
2k∑
i=0

(−1)iqk
2+izk−i

]

which was the desired formula for the right hand side

Then, we attempt the q = x, z = −x substitution again, obtaining

Theorem

∞∏
n=1

(1− xn)3 =

∞∑
k=0

(−1)k(2k + 1)xk(k+1)/2 in K[[x]]
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Proof. By the previous theorem, if we let q = x and z = −x, we get for the right hand side

∞∑
k=0

2k∑
j=0

(−1)jqk
2+izk−j =

∞∑
k=0

2k∑
j=0

(−1)jxk2+j(−x)k−j

=

∞∑
k=0

2k∑
j=0

(−1)kxk2+k

=

∞∑
k=0

(−1)k(2k + 1)xk2+k

=

∞∑
k=0

(−1)k(2k + 1)(x2)k
2+k/2

For the left hand side,(
1 + qz

)(
1− q2

) ∞∏
n=2

(
1 + q2n−1z

)(
1 + q2n−1z−1

)
(1− q2n)

= (1− x2)(1− x2)

∞∏
n=2

(1− x2n−2)(1− x2n)(1− x2n)

= (1− x2)2
∞∏

n=2

(1− x2n)2(1− x2n−2)

= (1− x2)2
∞∏

n=2

(1− x2n)

∞∏
n=2

(1− x2n−2)2

=

∞∏
n=1

(1− x2n)2
∞∏

n=2

(1− x2n−2)

=

∞∏
n=1

(1− x2n)

∞∏
n=1

(1− x2n)2

=

∞∏
n=1

(1− x2n)3

=

∞∏
n=1

(1− (x2)n)3

So in all we have shown
∞∏

n=1

(1− (x2)n)3 =

∞∑
k=0

(−1)k(2k + 1)(x2)k
2+k/2

and we may “unsubstitute” (Lemma 4.3.3 in [24ac]) x2 to obtain

∞∏
n=1

(1− xn)3 =

∞∑
k=0

(−1)k(2k + 1)xk2+k/2
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